
by Dinu Madau
 Software Engineer
Visteon Automotive Systems

Software professionals have
learned over the years that soft-
ware is prone to illness. I use the
term “illness” instead of “soft-
ware error” or “failure” because
software inherently doesn’t fail.
Given the same operating condi-
tions, the software will behave
in a predictable manner. The
behaviour may not be desirable
and may induce a failure in the
overall system but the software
itself does not fail. Contrast that
with a failure in a mechanical sys-
tem due to fatigue. The software
may have been coded incorrectly
or coded correctly to an incorrect
requirements specification. The
symptom of the illness can be
partial or complete system failure
and is often hidden for most op-
erating conditions. After the soft-
ware has undergone verification
and validation, it is considered
healthy and ready to be released
to the public. All too often it is
only when the product is in the
hands of the customer that the
symptom of the illness becomes
evident.

Neither is the compiler im-
mune to symptomatic illness,
since it is a complex software sys-
tem. Initially, C compilers on the
market had characteristics that
were often unique to themselves.
After all, compiler writers had
no common standard that fully
defined their product’s opera-
tion. Even when a programming
standard was defined by the C
standards committee, some com-
piler writers, particularly those
for embedded systems, contin-
ued to treat the standard as the
committee’s opinion of how their
product should behave. What
amplifies this problem is that the
committee defining the standard
could not even agree on some of
the behaviours of the C program-
ming language (for example,

Annex G ISO/IEC 9899-1990 un-
specified behaviour). 1

The intent of this article is to
increase the quality of the soft-
ware product by defining a verifi-
able and enforceable defensive
programming standard for your
software development team. This
standard should take into consid-
eration the limitations of the C
coding standard and your com-
piler. Develop a habit of using de-
fensive programming techniques.

What’s a software professional
to do in this complex world of
compilers, committees, and stan-
dards? If we consider the analogy
of driving a car, we can parallel the

methods used to avoid an auto-
mobile accident with software en-
gineering techniques. Automotive
manufacturers develop vehicles
that are inherently stable and
predictable. On the other hand,
the environment in which these
vehicles are used is less predict-
able, and the users of the vehicles
are prone to error due to a num-
ber of preoccupations—after all,
we’re only human. To reduce the
possibility of an accident, local
governments have established
laws that must be followed. We
obey the laws and as an additional
precaution, develop a defensive
driving style to avoid accidents. If

we are involved in an accident, the
casualties are typically less than
those resulting from an offensive
driving style, otherwise known as
road rage.

Let’s transfer this analogy to the
world of software development.
The various compiler behaviours
are usually well defined, even for
behaviours that are undefined in
the standards. The user/program-
mer’s environment is less predict-
able due to a number of real-world
preoccupations such as deadlines,
schedules, stress, or co-workers
in the next cubicle. The software
standards committee realised that
a “law” had to be established. After

Table 1 Reverse notation table

Standard C Types

Prefix Type Example

uc unsigned char ucByteVariable

sc signed char scByteVariable

bf bit field bfFlags

us signed short ssWordVariable

ss signed char scByteVariable

ul unsigned long ulDouble

sl signed long slDouble

adt abstract data type adtUNION_VAR

fl floating flSpeedOfLight,
flSHUTTLE_TRAJECTORY

Pointers to any of these types (add a p in front of the prefix)

Prefix Type Example

p???, p?? pointer to ??? type pucByteVariable (a pointer to an
unsigned character type)
padtSTRUCTURE (a pointer
to an abstract data type)

pa?? pointer to array of type ?? paucByteVariable (a pointer
to array of type character)

Scope

Prefix Type Example

All uppercase global variables ssGLOBAL_VAR_ONE

First letter uppercase
and at least one lower-
case letter to follow

local variables usLocalOne, slLOCALone,
bfFlags_4TEST

Constants

Prefix Type Example

All uppercase with
optional prefix type fol-
lowed by an underscore

constants TIME_CODE, SS_PI, optional
prefix type SL_GRAVITY

� eetindia.com | December 1999 | EE Times-India

Rules for defensive C programming
C PROGRAMMING

http://www.eetindia.co.in

much deliberation, the American
National Standards Institute (ANSI)
C standard was established, which
today is referred to as the ISO
9899-1990 standard for program-
ming languages—C. People, un-
fortunately, are still prone to error,
which leads to the necessity of a
defensive programming style to
reduce the possibility of an “acci-
dent” or even worse, the nasty f-
word: “failure.” Arrogant program-
mers assume that compilers have
the ability to read their minds and
determine the intended functions
of their code fragments. Allow me
to clarify with an example.

Note the misuse of operator
precedence in the following state-
ment, a common file handling
routine:
if (InVar = getc(input)
!= EOF)

The programmer’s desire is
that the next character in the
input stream from the file be
loaded into the variable InVar and
compared with the end-of-file
character (EOF). The only problem
is that the order of precedence of
the compiler was assumed by the
programmer (unfortunately, the
compiler can’t read the mind of
the programmer) and the func-
tion executes as follows:
if (InVar = (getc(input)
!= EOF))

InVar will either be set to TRUE
or FALSE but never to the character
of the getc command as is desired
by the “offensive” programmer. In
fact, InVar is set to TRUE only when
the EOF marker is reached at the
end of the file. This statement of
code is then reduced to an end of
file “finder.” (Another inventive use
for this line of code is to induce a
variable delay into your system,
dependent on the length of your
input file.)

The goal of this article is to
introduce you to methods that
can help reduce the occurrence
of software illness. I will discuss
different techniques for defensive
C programming that have been
used in development of safety-
critical systems. Each section
will establish a guiding rule or

principle followed by supporting
material, which in most cases will
include examples, pseudocode,
and C code.

Standardisation
Standardisation leads us to the
first rule of defensive C-ware:
Every software development
team should have an agreed-
upon and formally documented
coding standard. A coding stan-
dard consists of a set of rules that
addresses weaknesses in the lan-
guage standard and/or compiler
idiosyncrasies and also defines a
format or “style” used for writing
code. Typical items in a coding
standard could address pointer
usage before initialisation, the use
of recursive algorithms, dynamic
memory allocation, unconditional
jumps, and so on. The coding
standard should also help to im-
prove readability. Every person
developing software has unique
coding practices. Therefore, if
more than one person is working
on a project, a common standard
should be established. It’s like
handwriting—you may be able
to read your own chicken scratch
but others most likely will struggle
through it.

One of the reasons for de-
veloping a coding standard is to
make code more readable, which
will positively affect the following
areas in software development:
•	 Code generation. A standard

reduces the probability of cod-
ing error

•	 Code reviews. A standard in-
creases the efficiency of peer
reviews and inspections

•	 Quality. A standard increases
the overall quality of the prod-
uct

•	 Maintenance. A standard in-
creases the maintainability of
the software product

If you’ve ever attended a meet-
ing for developing a standard,
you’ll notice that people are quite
attached to their own personal
style of programming, and that
trying to get them to buy into
your style is like telling them that
their babies are ugly. When you at-
tend these meetings, be prepared

to discuss items that will affect the
goals for developing the standard.
If you have a personal style that
you want to provide which does
not add to the underlying goal of
making software more readable,
then it’s best to leave that baby at
home.

If you don’t have a good stan-
dard in place, start off by using one
of the publicly available standards.
At first, try to use portions of the
standard that will give you the
highest return on investment and
slowly expand the coverage as
applicable for your development.
Change is best implemented in
small increments; otherwise you’ll
probably encounter large resis-
tance to it. Standards already exist
for specific market segments, such
as the Motor Industry Software
Reliability Association (MISRA,
April 1998) intended for embed-
ded automotive applications. The
standard consists of 127 rules, 34
of which are defined as advisory.
It is available on the Internet at
www.misra.org.uk . Another
standard developed by the U.S.
Nuclear Regulatory Commission

(June 1996) is the NUREG CR-
6463, entitled Review Guidelines
on Software Languages for use
in Nuclear Power Plant Safety
Systems . Both of these standards
are good starting points.

A standard is only as good as
the ability of the team to verify
and enforce its implementation.
It is a futile task to take good soft-
ware professionals and get them
involved in software politics by
creating laws or standards that are
not only unenforceable but also
unverifiable. Therefore, someone
with authority (that is, the person
who writes the performance re-
views) must support your efforts,
or they will fail.

A preferred method for verify-
ing compliance is through the
use of static checking tools. These
tools, although powerful, are usu-
ally unable to guarantee full com-
pliance (depending on the details
of your standard). Another way to
verify and enforce compliance is
through code reviews and inspec-
tions. 2

Variable naming . One of the
items that is usually discussed at

Table 2 Precedence table for C

Operators Associatively

() [] -> . ++ --(post) Left to right

! ~ (pre)++ -- + - * & (type) sizeof Right to left *

/ % Left to right

+ - Left to right

< < >> Left to right

< < = > >= Left to right

= = != Left to right

& Left to right

^ Left to right

| Left to right

&& Left to right

|| Left to right

?: Right to left *

= += -= *= /= %= &=
^= |= < < = >>=

Right to left *

, Left to right

*Reversed associate property

� eetindia.com | December 1999 | EE Times-India

http://www.misra.org.uk/
http://www.eetindia.co.in

a coding standards meeting is a
naming convention for the vari-
ous C-types. The goal is to be able
to look at a line of code and de-
termine the variable or constant
types used. Take the following line
of code, for example:
Energy = Mass *
(Speed_Of_Light_
squared);

You have limited information
about this equation without refer-
encing the definitions document
for the variables and constants
used in the formula. The task of
trying to inspect this line of code
with respect to balancing and
promotion of types would be time
consuming and prone to error due
to cross referencing. Determining
if variables are local or global, or
whether any concern exists about
overflows in the calculation, can
be difficult.
Now assume the following ab-

breviated variable naming
convention:

•	 All variables will have a lower-
case, two- to three-character
prefix which defines its type
followed by an uppercase
character for the start of the
variable name (ss = signed
short, sl = signed long, uc =
unsigned character, and so
on)

•	 All local variables will have
intermixed uppercase and
lowercase characters to define
their names

•	 All global variables will be de-
fined in uppercase

•	 All constants will be uppercase
and if typecast in the #define,
then a two-character prefix
type in uppercase followed by
an underscore will be used to
define their type

Following these rules, we
would rewrite the previous equa-
tion as:
slENERGY = usMass *
(SL_SPEED_OF_LIGHT_
SQUARED);

An analysis of the this line of
code reveals that slENERGY is of
type signed long and is a global
variable. SL_SPEED_OF_LIGHT is

a constant cast in the define as a
signed long. The variable usMass
is a local variable of type unsigned
short. A check of balancing and
promotion is easily done now that
the variable types are readily iden-
tified. The product of usMass with
the SL_SPEED_OF_LIGHT forces
usMass to be cast to an intermedi-
ate type signed long integer. The
advantages of a naming conven-
tion are clear. The information
now available from the rewritten
line of code far outweighs the
information available from the
original line of code.

Now when you see the follow-
ing statement at a code review:
ssPRODUCT = (ssNumber1
*
ssNumber2) / scDivisor;

you should question whether
the intermediate product would
fit in a signed short or just play
it safe and cast the intermediate
product to a signed long before
dividing. Casting one of the ele-
ments of the product to a signed
long forces the intermediate prod-
uct of ssNumber1 and ssNumber2
to be promoted to a signed long:
ssPRODUCT = ((signed
long)ssNumber1 * ssNum-
ber2) /
scDivisor;

Let’s define a naming conven-
tion for C types. The reverse no-
tation uses a prefix to define the
variable’s type. Table 1 contains
conventions for all of the C types,
in reverse notation.

Magic numbers
Do not use hard coded num-
bers directly in expressions.
Maintainability becomes a hor-
rendous task when the code is
contaminated with magic num-

bers. A magic number has mean-
ing to the original programmer at
the time of coding, but when the
programmer leaves the company
due to an evolutionary process
called career development, the
significance of the number (unless
defined in a comment or defini-
tion table) can lose meaning. Let’s
take the simple line equation to
help illustrate this point. The equa-
tion is:
y
 =
m
 *
x
 +
b

where m is the slope of the

line, b is the y intercept (at x = 0),
and x (input) and y (output) are
the points on the x - and y -axes.
You can write the following line of
code to satisfy the requirements:
ssY = (31.872983 * ssX)
+ 45.3232;

If this line of code is out in
the field for many years and then
a requirement change is issued
forcing a modification to the code,
at first glance a person would try
to determine the origins of the
numbers. If the code is properly
commented, this becomes less of
an issue (although the same con-
stant might be used in a different

part of the software, increasing
complexity). Contrast that with
the following line of code:
ssY = (SS_PRESSURE_
SLOPE * ssX) + SS_PRES-
SURE_INTERCEPT;

The first observation you can
make is that the equation deals
with some type of pressure con-
stants. The key words SLOPE and
INTERCEPT indicate to the reader
that the expression might take
on the format of a line equation.
The constants can be defined in
a parameter or constant defini-
tion file or in the local header
file. Any changes in the value of
the constant would propagate
throughout the definition scope
of the software product, spar-
ing the programmer the burden
of searching the entire software
product for all occurrences of the
constant.

Indentation
Establish an indentation standard
and be consistent throughout the
work product. Structured indenta-
tion makes software easier to read,
thereby reducing the possibility of
coding error. Consider the follow-
ing example:
for (x=0; x
<
= LIMIT; ++x) {
for (y=1; y
<

Table 4 Defining replacements for standard C types

Replacement type C-Types Compiler sizing

typedef unsigned char UBYTE; /* 8 bit types */

typedef signed char BYTE;

typedef unsigned short UWORD; /* 16 bit types */

typedef signed short WORD;

typedef unsigned long ULONG; /* 32 bit types */

typedef signed long LONG;

Table 3 Limiting the definition of macros

Macro name Definition Description

#define SIGN(x) (((x)>=0) ? (1) : (-1)) Sign of variable i

#define MAX(x, y) (((x) < (y)) ? (y) : (x)) Max of x or y

#define MIN(x, y) (((x) > (y)) ? (y) : (x)) Min of x or y

#define LIMIT(x,low,high) ((x) >(high)?(high):((x
)<(low)?(low):(x)))

� eetindia.com | December 1999 | EE Times-India

http://www.embedded.com/1999/9912/9912feat1table1.htm
http://www.eetindia.co.in

= Y_LIMIT; ++y)
{
z+= x*y;
if (x == TEST) {
printf(“x value pass”);
t=x/AVERAGE;
}
z /= 4;
}
}

Nerves of steel would be
required to prepare for a code
inspection if you had to review
page after page of poorly in-
dented code. This piece of code
could give the visual illusion
that the line of code z /= 4; ex-
ecutes as part of the x for loop.
Remember, you’re a software
professional, not a magician.
Leave the illusions to manage-
ment.

Now consider the more pal-
atable solution:
for (x=0; x
<
= X_LIMIT; ++x)
{
for (y=1; y
<
= Y_LIMIT; ++y)
{
z += x*y;
if (x = =TEST)
{
printf(“x value pass”);
t = x/AVERAGE;
}
z /= 4;
}
}

Good indentation helps to
visually define the structure of
the code. The line of code z /=
4; is clearly executed as part of
the y for loop. In this example,
all open and closed braces were
put on separate lines with the
open braces lining up with the
first character of the conditional/
loop expression. Both versions of
the source code execute identi-
cally; the only difference is the
visual interpretation. A good rule
of thumb is to allow only one
statement per line of code and
insert braces on their own line.

For complex conditional
statements with multiple ele-

ments, put each element on its
own line. See Listing 1 for an
example.

Although the conditional
statement in Listing 1 can be for-
matted in other ways that would
equally increase the readability
of the expression, placing each
condition on separate lines has
additional advantages (similar
to those of placing each vari-
able definition on its own line). A
change to one condition of the
multi-conditional statement will
not affect the other conditions.
Each line can then be individu-
ally commented for enhanced
clarity, as shown in Listing 2 .

You be the judge. Which
piece of code would you rather
inspect? Whatever form of in-
dentation you decide to use, you
must be consistent throughout
your code. Remember, one of
the objectives is to make the
code more readable.

Parenthesizing
Always use full parenthesizing for
macros and equations. To reduce
the possibility of error when us-
ing the preprocessor, always use
full parenthesizing. Most people
who use parentheses when de-
fining negative numbers don’t
use them when defining posi-
tive numbers. Parenthesizing
all numbers is beneficial for the
following reasons. First, nobody
has ever gotten into trouble by
using too many parentheses;
it’s the placement of the paren-
theses that introduces errors.
Second, let’s consider the fol-
lowing example of defining a
positive number:
#define	POS_NO	10

When the preprocessor ex-
ecutes it will find the location of
POS_NO and replace it with the
value of 10. Since the operation
of the preprocessor is weakly
defined, the compilation of the
following line of code is entirely
dependent on the compiler:
ssY = .POS_NO;

The decimal point before
POS_NO might be treated as just
that, a decimal point and the line

would appear to the compiler
as:
ssY = .10;

If you’re fortunate, your
compiler would freak out at this
implementation and generate an
error message (in capital letters
because it likes to shout when you
do stupid things). This is the best
case scenario. The compiler might
very well compile this line of code
and grant you the luxury of find-
ing the problem in the debugging
phase. The whole problem could
be easily avoided by #defineing
the POS_NO parameter in paren-
theses:
#define POS_NO	(10)

In all cases, the preprocessor
would replace POS_NO with (10)
and the code would appear to the
compiler as:
ssY = .(10);

In this case the compiler should
flag an error. It’s worth noting here
that the period or decimal point
(.) is defined in the C language as
an operator with similar attributes
and constraints as other opera-
tors.

Precedence . If you’ve memo-
rised the precedence table for C
and trust your memory, you can
skip to the next section. The rest

of us will take a look at the order
of arithmetic and logic prece-
dence for C. Table 2 is arranged
from high to low precedence.
Operators on the same row are of
equal precedence and their asso-
ciative property is defined in the
right column.

For three levels of precedence,
the associative properties are re-
versed from the rest of the table.
The “equal” (=) assignment opera-
tor is treated as any other operator
in C, unlike other programming
languages (such as Pascal and
Ada) in which the assignment op-
erator is unique.

Consider the following equa-
tion:
ssY = ssM * ssX + ssB;

Assuming that the algorithm
author’s intent is that the multi-
plication should execute first, the
line of code should be written as:
ssY = ((ssM * ssX) +
ssB);

By full parenthesizing every ex-
pression, you’ll eliminate the ques-
tion of when to and when not to
do it. It also aids in documenting
the programmer’s intent. Maybe
the programmer wanted the sum
of ssX and ssB to be executed be-
fore the multiplication. The equa-
tion would then be written as:

Listing 1 Complex conditional state-
ments with multiple elements:

a) Every element on the same line;
b) Each element on its own line
a)
if (((ssFL_Valve==FRONT && ssCOIL_BIAS==FRONT) || (ss-
CTRL_Valve==REAR &&
ssCOIL_SIDE==LEFT || ssCOIL_SIDE==RIGHT)) && ssPOWER_
FROM_IGNITION!=OFF)
b)
if
(
(
(
ssFL_Valve==FRONT
&& ssCOIL_BIAS==FRONT
)
||
(
ssFR_Valve==REAR
&& ssCOIL_SIDE==LEFT
|| ssCOIL_SIDE==RIGHT
)
)
&&
ssPOWER_FROM_IGNITION!=OFF
)

� eetindia.com | December 1999 | EE Times-India

http://www.embedded.com/1999/9912/9912feat1list1.htm
http://www.embedded.com/1999/9912/9912feat1list1.htm
http://www.embedded.com/1999/9912/9912feat1list2.htm
http://www.embedded.com/1999/9912/9912feat1table2.htm
http://www.eetindia.co.in

ssY = (ssM * (ssX +
ssB));

Full parenthesizing should
be second nature, especially in a
safety-critical system. Too many
software bugs are a direct result
of incorrect precedence assump-
tion and/or poor parenthesizing.
The solution for eliminating pre-
cedence problems is easy: use full
parenthesizing.

Using the preprocessor
Don’t use the preprocessor for
defining complex macros. Of
course, the word “complex” is
open for interpretation. It should
therefore be defined within your
development team. The opera-
tion of the preprocessor is poorly
defined in the C coding standard,
so its operation is at the mercy
of the compiler writers. The
preprocessor does have some
valid uses, which, when applied
properly, can help increase the
maintainability and readability of
the code.

The preprocessor is useful for
defining “manifest constants” and
for pre-calculating constants. This
feature allows the user to force the
preprocessor to calculate math-
ematical expressions into a con-
stant type. The value of that type
then gets replaced throughout
the scope of the code. Scaling and
conversions are common uses for
this feature. For example, the con-
version from miles per hour (MPH)
to kilometers per hour (KPH) is re-
quired for a vehicle parameter that
is given in miles per hour:
#define	MPH_TOP_VEHICLE_
SPEED (154)
/*MPH*/
#define KPH_TOP_VEHI-
CLE_SPEED
(MPH_TOP_VEHICLE_SPEED
* 1.6)
/*KPH*/

The calculation is carried out
using the highest precision of
the preprocessor, usually floating
point, and can then be cast to the
required type. Despite the sim-
plistic example, one can envision
multiple conversions and scalings
within one #define . When the

parameter for top vehicle speed
changes, the intermediate con-
stant calculations are automated
by the preprocessor and the
change would be propagated
throughout the scope of the
code.

Let’s consider another example.
We will allow the preprocessor to
do calculations in floating point
and then convert the constant to
the format in which it will be used.
The formula for the area of a tri-
angle is half of the base times the
height. Let’s assume that for this
application, the base and height
are known system parameters.
The base is equal to 10cm. The
height is equal to 5cm. You could
either code the area of the triangle
directly:
#define TRIANGLE_AREA	
(25)

Or you could define the base
and height separately:
#define
TRIANGLE_BASE	(10.0)
/* cm */
#define TRIANGLE_HEIGHT	
(5.0)	
/* cm */

and then define TRIAN-
GLE_AREA as:

#define	TRIANGLE_AREA	
(0.5 *
TRIANGLE_BASE * TRIAN-
GLE_HEIGHT)

The value, TRIANGLE_AREA
, is calculated by the preproces-
sor with the maximum precision
available. TRIANGLE_AREA can
then be type cast in the code or in
the #define as follows:
#define	US_TRIANGLE_AREA	
(unsigned
short) (0.5 * TRIANGLE_
BASE *
TRIANGLE_HEIGHT)

Since the area will always
be positive, an unsigned short
type is used. The advantage to
this method is that if the base or
height of the triangle changes,
you don’t have to recalculate the
area. All you have to do is change
the parameters of the triangle in

the definition. This technique be-
comes highly valuable when you
have constants that are a direct
result of complex formulas based
on physical system parameters.

Limit the definition of macros
in the preprocessor to highly
reuseable, simple functions. See
Table 3 for an example.

Notice the use of full parenthe-
sizing, which ensures that the ar-
guments and the resulting expres-
sions are properly bound. There is
no room for ambiguity. The previ-
ous macro definitions are generic
functions that will most likely be
used often. Defining macros alle-
viates the need for a function call,
which reduces execution time.
However, taking the address of
the macro is undefined because
it has no address. Unique, applica-
tion-specific functions should not
be defined as macros.

#IFDEF . A word of caution
for those who use #ifdef instead
of #if . A common use for the #if
statement is to strap in and out
portions of code that are configu-
ration dependent. It would seem
tempting to use the #ifdef , which
calculates to TRUE if the variable
is defined. Consider the following
example.

In a configuration header file,
the following define statements
exist:
#define FOUR_WHEEL_DRIVE	
(0)
#define REAR_WHEEL_DRIVE	
(0)
#define FRONT_WHEEL_
DRIVE	 (1)

The configuration file allows
the programmer to choose be-
tween the three different vehicle
configurations that are available
for the software product. Each
configuration consists of unique
straps or patches that must be
included at compile time. Now
suppose the programmer wants
to strap out a piece of code using
the defined configuration as fol-
lows:
#ifdef	REAR_WHEEL_DRIVE
{do code block A}
#endif
#ifdef	FRONT_WHEEL_
DRIVE
{do code block B}
#endif

Both blocks of code would be
included at compile time because
the #ifdef only interrogates the
variable name for a definition. A
definition of zero (0) would still
flag a logic TRUE to the preproces-
sor. Avoid this by eliminating the
use of the #ifdef and #ifndef and
use #if instead. A #undef operator
is provided to undefine a variable
if for some reason you crave the
use of the #ifdef operator.

Macros for the interface .
Another good use for macros is
in developing reusable interfaces.
For example:
#define ssGET_SENSOR_
SIGNAL()
(signed short
int)(RAW_ANALOG_INPUT.
SENSOR1)
#define ssGET_NEVRAM_
DATA ()

Listing 2 Each line can be individually commented for clarity
if (((ssFL_Valve==FRONT /*FL valve set to front when
coil is set to front*/
&& ssCOIL_BIAS==FRONT /* Coil Bias: see DFD 1.3.4 for
more information */
)
||
(ssCTRL_Valve==REAR
/* Control valve set to rear check coil side */
&& ssCOIL_SIDE==LEFT
/*Assure that one side is selected. Left
Side check*/
|| ssCOIL_SIDE==RIGHT
/* Check if Right Side is selected */
)
)
&& ssPOWER_FROM_IGNITION!=OFF /*Make sure that we are
not in power save mode*/
)
)

� eetindia.com | December 1999 | EE Times-India

http://www.embedded.com/1999/9912/9912feat1table3.htm
http://www.eetindia.co.in

(NVRAM_STRUCTURE.DATA_
REGISTER)
#define
ssPUT_NVRAM_DATA (x)
(NVRAM_STRUCTURE.DATA_
PORT = (x))

The interface is defined by Get
and Put macros and the definition
of these macros are hardware-,
machine-, and/or architecture-de-
pendent. In this example, the ss-
Get_sensor_signal macro looks for
a data structure (RAW_ANALOG_
INPUT) that is memory mapped
to the A/D converters and picks
out the SENSOR1 port of the A/D
converter. As an algorithm devel-
oper, my only concern is to get the
sensor data from the first sensor (
SENSOR1). This means that what
is hidden or encapsulated into
the macro (similar to C++) is of
little interest once the interface is
designed. The sensor data might
come from a telemetric signal that
is bounced off of a satellite and
then uploaded through the World
Wide Web via an HTML page. It
does not really matter. What’s im-
portant is the value of the sensor
signal at a given time. Therefore,
the interface in the main code
would consist of Get and Put mac-
ro statements. When the hard-
ware architecture changes, only
the macro definition is modified
to correspond to the change. The
software is completely void of any
interface code with the exception
of an interface header that links
the outside world to the inside.

Macros are useful when ap-
plied correctly. Conversely, they
can be your worst enemy, unmer-
cifully enslaving you to agonizing
hours of debugging. Ignorance is
not bliss in this case.

The balancing act
Most of the time we don’t care
how the compiler internally bal-
ances and promotes the differ-
ent variable types, as long as we
get the desired result. When we
don’t get the desired result we
are rudely awakened to the tune
of assembly-level debugging, try-
ing to determine why a simple,
straightforward equation does
not function correctly. In C, the

promotion rule is as follows:
Integral types of character,

short integer, or an integer bit field
and their signed and unsigned va-
rieties will be converted to signed
integer if the signed integer can
represent all values of the original
type; otherwise it is converted to
unsigned integer. (6.2.1.1 ISO)

So chars, shorts, and bit fields
get converted to some type of
integer (signed or unsigned)
before an expression is executed
internally.

To avoid potential problems,
explicitly cast non integer oper-
ands in expressions. When using
char, short, or bit fields types in
expressions, always cast them to
the appropriate integer type to re-
duce the possibility of conversion
errors. If you don’t, C automatically
converts these integral types to
integer before executing the
expressions, and the conversion
might not give the desired result.
Even if you verify the behaviour
of your compiler for conversions
of these types, when you switch
to another compiler for a differ-
ent program, its behaviour might
be different. Let’s look at another
example that will help illustrate
the problem.

Let UC be a variable of type
unsigned char set to the value of
zero (0). Will the following condi-
tional expression result in true or
false?
UC = 0;
if (UC == ~0xFF)

From the C balancing rule,
both UC and the hex value 0xFF
are converted to type signed in-
teger (because their values can be
contained in the signed data type)
before being evaluated. UC is cast
to signed short 0:0 (both bytes
set to zero). The hex value 0xFF is
cast to a signed short 0:FF (the first
byte is 0 and the second byte is set
to hex FF). The not operator func-
tions on the integer type, which
results in FF:0. The comparison is
then done between 0:0 and FF:0
and the expression from the view
of the compiler takes on the fol-
lowing after the negate operator
is done:
if ((signed short)0x0000

= =
(signed short)0xFF00)

This expression would result in
an evaluation of false. The problem
could easily be avoided by casting
the constant to the desired type:
if (UC == (unsigned
char)~0xFF)

This will effectively truncate
the top byte of the integer and
the comparison will be done on
character types. When in doubt,
cast it out.

Explicitly define your types as
signed or unsigned. If you don’t
specify the signed or unsigned
type, the C compiler will select
one for you, which might not
achieve the desired result. In most
cases, when defining a variable as
an integer, the compiler assigns
the default type of signed short
integer unless the value cannot be
contained by that data type. When
defining a bit field or character
type, the default type is entirely
compiler dependent. Explicitly de-
fining your data types as signed or
unsigned increases the portability
of the code. What you might con-
sider to be an unsigned character
type in your code might actually
be viewed by the compiler as a
signed character type. By allowing
the compiler to choose for you,
you’re essentially giving up your
first amendment right as a soft-
ware developer, which states that
software professionals are more
capable than compilers at making
decisions. What about a signed bit
field of length one?

Explicitly cast mixed precision
arithmetic operands in expres-
sions. In expressions, the sub-
expressions are evaluated at the
appropriate operand precision.

The desired result may not be
achieved if the resultant precision
is greater than the expressions op-
erand precision. To eliminate this
error, explicitly cast the operands
to the final precision of the result.
For example:
signed short ssV1 = 1;
signed short ssV2 = 2;
float fResult;
fResult = ssV1 / ssV2;

Here fResult incorrectly calcu-
lates to zero because the sub-ex-
pression is evaluated with integer
precision. The expression:

fResult = (float) (ssV1 /
ssV2);

also incorrectly evaluates to
zero for the same reason. The sub-
expression ssV1 / ssV2 is calculated
with integer precision and then
the integer result is cast to floating
precision. Consider the following:

fResult = (float) ssV1 /
ssV2;

or:

fResult = (float) ssV1 /
(float) ssV2;

Both evaluate to the correct re-
sult (0.5). Explicitly casting one of
the operands in the sub-expres-
sion to the desired precision of the
result forces the sub-expression to
be evaluated at the resultant pre-
cision.

Portability
Reusable code—everyone talks
about it, yet when you’re asked
to reuse someone else’s code, a
chill runs up your spine. Let’s face
it, at one time or another most of

Listing 3 Macros for rounding, with a type cast thrown in
#define UC_RND(i) ((UBYTE)((i)+0.5))

#define SC_RND(i) (((i)>=0) ? (BYTE)((i)+0.5) :
(BYTE)((i)- 0.5))

#define US_RND(i) ((UWORD)((i)+0.5))

#define SS_RND(i) (((i)>=0) ? (WORD)((i)+0.5) :
(WORD)((i)-0.5))

#define UL_RND(i) ((ULONG)((i)+0.5))

#define SL_RND(i) (((i)>=0) ? (LONG)((i)+0.5) :

(LONG)((i)-0.5))

� eetindia.com | December 1999 | EE Times-India

http://www.eetindia.co.in

us had to reuse a piece of code
that was supposed to be portable.
In reality, it wasn’t. And we all
remember the joy of debugging
someone else’s code. This section
will address some guidelines for
designing code that is targeted for
portability. One of the weaknesses
of the C standard is in defining the
sizes of types. C specifies that:
char >= 8 bits
short >= 16 bits
integer >= 16 bits
long >= 32 bits
and a char <= short <=
integer <= long

Portability of types becomes
an issue in the C language be-
cause the compiler writers must
determine the size of types based
on these constraints. The solu-
tion is to define replacements for
standard C types. Table 4 can be
defined in a header file and then
modified to reflect the size differ-
ences of your C compiler.

The replacement types are
used throughout the code for
casting and defining variables.
When you switch to a different
compiler, just change the header
file to reflect the type sizes.

Defining logical opposites .
How many times have you seen
the following?
#define	TRUE	 (1)
#define	FALSE	 (0)

When defining logical oppo-
sites, first define one of the logical
states and then define the oppo-
site state as a macro based on the
original state:
#define	TRUE	 (1)
<
#define	FALSE	 (!TRUE)

This method has two advan-
tages. First, if the logical state
for TRUE is changed, the logical
states that are based on TRUE are
automatically changed. By de-
sign, this increases the readabil-
ity of the code, provides a better
understanding of the intent of
the original software writer, and
helps document the code. The
software engineer doesn’t have
to search and guess which states
are logical opposites. Second,

some optimisers will perform
better if the logical opposite
states are based on each other.
An example that isn’t totally intui-
tive would be defining a flag that
indicates bit ordering:
#define MSB_First (TRUE)
/* most
significant bit is
packed first */
#define LSB_First (!MSB_
First)
/* least significant bit
is
packed first */

In this case LSB_First is the
logical opposite of MSB_First
because only one can be true
for any given configuration.
Therefore, their definitions are
based on each other.

Bit ordering . Bit-field ordering
is compiler dependent. There are
two common bit field orderings:
most significant bit (MSB) first
or least significant bit (LSB) first.
When defining a bit field variable,
use the preprocessor directive #if
to strap in the desired bit field or-
dering at compile time based on a
configuration flag. Some compil-
ers will give you a command line
option to reverse bit ordering.
Relying on the compiler option,
though, reduces the portability of
the code. For example, let’s look at
the following definition:
#if
(MSB_First)
struct Flags {
unsigned int	 Bit7: 1;
unsigned int	 Bit6: 1;
unsigned int	 Bit5: 1;
unsigned int	 Bit4: 1;
unsigned int	 Bit3: 1;
unsigned int	 Bit2: 1;

unsigned int	 Bit1: 1;
unsigned int	 Bit0: 1;
};
#elif (LSB_First)
struct Flags {
unsigned int	 Bit0: 1;
unsigned int	 Bit1: 1;
unsigned int	 Bit2: 1;
unsigned int	 Bit3: 1;
unsigned int	 Bit4: 1;
unsigned int	 Bit5: 1;
unsigned int	 Bit6: 1;
unsigned int	 Bit7: 1;
};
#endif

If MSB_First gets set to TRUE
(1) , the bit ordering of the first
structure is used. If LSB_First is set
to TRUE , the bit ordering of the
second structure is used.

Max and min limits . If you don’t
have a limits.h file for your compil-
er, define the limits of your types
in a separate header file. Even if
you have a limits.h file, it would be
good to redefine your limits based
on your defined types. If your
limits change due to type size
changes, you need only change
the header file for these limits. A
typical limits file definition based
on the replacement types of Table
4 consists of the following:
#define	BYTE_MIN (-127)
/* 8-bit
type */
#define	BYTE_MAX (127)
#define	UBYTE_MAX (255)
#define	WORD_MIN (-32767)
/* 16-
bit type */
#define	WORD_MAX (32767)
#define	UWORD_MAX (65535)
#define	LONG_MIN (-
2147483647)
/* 32-bit type */

#define	LONG_MAX
(2147483647)
#define	ULONG_MAX
(4294967295)

Floating point to integer
When you allow the macros to
pre-calculate constants using the
maximum resolution of the pre-
processor, which is typically done
in floating point, you must either
truncate the result or round it up
or down before stuffing it into an
integer variable (assuming that
you are using integer math in your
software). If the accuracy of the
variable or constant forces you
to round to the nearest integer
you would either add or subtract
0.5 from the number and then
truncate it. The possibility for er-
ror arises if you’re trying to round
signed numbers. Let’s take the
following example:
#define	
SPACE_SHUTTLE_ORBITAL_
TRAJECTORY
(SHUTTLE_CRUISE_SPEED
- (SHUT-
TLE_WEIGHT* 1.67584))

Realistically, the shuttle’s or-
bital trajectory would probably
be done in floating point, but stick
with me here while I use the ab-
surd to illustrate the practical. If we
desired to round the number and
cram it into an integer constant,
the following rules would apply:
•	 If the number >= 0, then add

0.5 and truncate
•	 If the number < 0, then sub-

tract 0.5 and truncate

Let’s assume that the algorithm
designer uses constants for the
shuttle cruise speed and weight

Listing 4 System hardware definition file
/* Analog to Digital Hardware Parameters */

#define
#define
#define
/* Sensor Hardware
Parameters */
#define
#define

A2D_VOLTAGE_RANGE_
MAX
A2D_VOLTAGE_RANGE_
MIN
A2D_RESOLUTION
(1024) /* 10 BITS
*/
SENSOR_ZERO_VOLT-
AGE
SENSOR_ZERO_POINT

(5)
(0)
(3.0)
(((SENSOR_ZERO_
VOLTAGE/(A2D_VOLT-
AGE_

/* VOLTS */
/* VOLTS */
/* VOLTS */

RANGE_MAX - A2D_VOLTAGE _RANGE_MIN))*
(A2D_RESOLUTION))

� eetindia.com | December 1999 | EE Times-India

http://www.embedded.com/1999/9912/9912feat1table4.htm
http://www.embedded.com/1999/9912/9912feat1table4.htm
http://www.embedded.com/1999/9912/9912feat1table4.htm
http://www.eetindia.co.in

that result in a positive trajectory.
The #define could be coded as:
#define \	
SL_ SPACE_SHUTTLE_OR-
BITAL_TRAJEC-
TORY	 (signed
long)
(SHUTTLE_CRUISE_SPEED
- (SHUT-
TLE_WEIGHT* 1.67584) +
0.5)

Years later, the shuttle cruise
speed is reduced resulting in a
negative shuttle orbital trajectory
constant. The rounding in this ex-
ample is done incorrectly and the
shuttle crashes into the earth at
about 2,000 MPH. Oops! To elimi-
nate this problem, create macros
for doing the rounding. And while
you’re at it, you can even throw a
type cast into the macro, as shown
in Listing 3 .

Now when the preprocessor
calculates the equation, the macro
checks for the sign of the result
and then adds or subtracts 0.5 as
appropriate, and the government
doesn’t have to raise our taxes to
pay for the mistake:
#define
SL_SPACE_SHUTTLE_ORBIT-
AL_TRAJEC-
TORY SL_RND(SHUTTLE_
CRUISE_SPEED
- (SHUTTLE_WEIGHT*
1.67584))

System parameters
When possible, tie your constants
and parameters back to some
physical unit. Then if the dimen-
sions of your external system
change, you can change the phys-
ical unit constant defined in your
header file so that all constants
based on the physical unit will
be recalculated at compile time.
Of course, you have to check for
overflows, but hopefully the soft-
ware is defined well and you are
given limits for the physical unit.

For example, let’s say we have a
10-bit analogue-to-digital voltage
converter (A to D) with a full swing
of zero to five volts. Let’s say that
the zero-point for the sensor in
which we’re interested is at +3.0V.
You could manually calculate the
zero point A-to-D value by taking
3/5 * 1023 and hard code the value
614 into the software:
#define	SENSOR_ZERO_POINT
(614)

If any part of the external archi-
tecture changes (voltage range,
zero point of the sensor, A-to-D
resolution) the software engineer
must recalculate the A-to-D zero-
point value manually. A better
method is to define the architec-
tural parameters in the hardware
header file, as shown in Listing 4 .

The value in which we’re inter-
ested is the SENSOR_ZERO_POINT

. If any part of the parameter of the
system changes, the value of the
SENSOR_ZERO_POINT is auto-
matically calculated.

The same concept holds true
for constants that are time-based.
You should tie them back to the
physical oscillator or internal clock
frequency. When you change
processing speeds, all you have
to do is alter the clock frequency
and all time-based constants are
recalculated.

On the defensive
Many of the ideas I’ve raised are
familiar to software developers,
especially those with years of
coding experience. Unfortunately,
experience is something you
don’t get until just after you need
it. There are many books authored
on software development meth-
ods for safety-critical systems that
define techniques to help reduce
the occurrence of errors. An article
of this length cannot do justice to
the topic, but I hope your interest
in defensive C coding practices
has increased. For more informa-
tion on the topic, check out the
references below.

References
1. ANSI/ISO 9899-1990, “For

Programming Languages—C,”
American National Standard
Institute, New York, NY.

Back
2. Humphrey, Watts S. A Discipline for

Software Engineering . Reading,
MA: Addison Wesley, 1995.
Back

Other sources
Abrial, J.R. The B-Book
Cambridge, U.K.: Cambridge
University Press, 1996.
Douglass, Bruce P. Real-Time UML:
Developing Efficient Objects for
Embedded Systems Reading,
MA: Addison-Wesley, 1998.
Hatton, Les. Safer C: Developing
Software for High-Integrity
and Safety-Critical Systems
New York: McGraw Hill, 1995.
IEEE. Software Engineering
Standard, 3rd Edition, New York:
Institute of Electrical and Electronic
Engineering, 1989.
Leveson, Nancy G. Safeware:
System Safety and Computers
Neumann, Peter G. Computer
Related Risks . Reading,
MA: Addison-Wesley, 1995.
Spinello, Richard A. Case
Studies in Information and
Computer Ethics Englewood
Cliffs, NJ: Prentice Hall, 1997.
Storey, Neil. Safety Critical
Computer Systems Reading, MA:
Addison-Wesley, 1996.

Email Send inquiry

� eetindia.com | December 1999 | EE Times-India

http://www.embedded.com/1999/9912/9912feat1list3.htm
http://www.embedded.com/1999/9912/9912feat1list4.htm
http://www.eetindia.co.in/article/email_friend.php3?article_id=8800505521&type=TA&cat_id=1800001&back_url=%2Farticle%2Farticle_content.php3%3Fin_param%3D8800505521_1800001_TA_abe3e679%26
http://www.eetindia.co.in/inquiry/send_inquiry.php3?article_id=8800505521&type=TA&title=Rules+for+defensive+C+programming&cat_id=1800001
http://www.eetindia.co.in

