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Software professionals have 
learned over the years that soft-
ware is prone to illness. I use the 
term “illness” instead of “soft-
ware error” or “failure” because 
software inherently doesn’t fail. 
Given the same operating condi-
tions, the software will behave 
in a predictable manner. The 
behaviour may not be desirable 
and may induce a failure in the 
overall system but the software 
itself does not fail. Contrast that 
with a failure in a mechanical sys-
tem due to fatigue. The software 
may have been coded incorrectly 
or coded correctly to an incorrect 
requirements specification. The 
symptom of the illness can be 
partial or complete system failure 
and is often hidden for most op-
erating conditions. After the soft-
ware has undergone verification 
and validation, it is considered 
healthy and ready to be released 
to the public. All too often it is 
only when the product is in the 
hands of the customer that the 
symptom of the illness becomes 
evident. 

Neither is the compiler im-
mune to symptomatic illness, 
since it is a complex software sys-
tem. Initially, C compilers on the 
market had characteristics that 
were often unique to themselves. 
After all, compiler writers had 
no common standard that fully 
defined their product’s opera-
tion. Even when a programming 
standard was defined by the C 
standards committee, some com-
piler writers, particularly those 
for embedded systems, contin-
ued to treat the standard as the 
committee’s opinion of how their 
product should behave. What 
amplifies this problem is that the 
committee defining the standard 
could not even agree on some of 
the behaviours of the C program-
ming language (for example, 

Annex G ISO/IEC 9899-1990 un-
specified behaviour). 1 

The intent of this article is to 
increase the quality of the soft-
ware product by defining a verifi-
able and enforceable defensive 
programming standard for your 
software development team. This 
standard should take into consid-
eration the limitations of the C 
coding standard and your com-
piler. Develop a habit of using de-
fensive programming techniques. 

What’s a software professional 
to do in this complex world of 
compilers, committees, and stan-
dards? If we consider the analogy 
of driving a car, we can parallel the 

methods used to avoid an auto-
mobile accident with software en-
gineering techniques. Automotive 
manufacturers develop vehicles 
that are inherently stable and 
predictable. On the other hand, 
the environment in which these 
vehicles are used is less predict-
able, and the users of the vehicles 
are prone to error due to a num-
ber of preoccupations—after all, 
we’re only human. To reduce the 
possibility of an accident, local 
governments have established 
laws that must be followed. We 
obey the laws and as an additional 
precaution, develop a defensive 
driving style to avoid accidents. If 

we are involved in an accident, the 
casualties are typically less than 
those resulting from an offensive 
driving style, otherwise known as 
road rage. 

Let’s transfer this analogy to the 
world of software development. 
The various compiler behaviours 
are usually well defined, even for 
behaviours that are undefined in 
the standards. The user/program-
mer’s environment is less predict-
able due to a number of real-world 
preoccupations such as deadlines, 
schedules, stress, or co-workers 
in the next cubicle. The software 
standards committee realised that 
a “law” had to be established. After 

Table 1 Reverse notation table 

Standard C Types 

Prefix Type Example 

uc unsigned char ucByteVariable 

sc signed char scByteVariable 

bf bit field bfFlags 

us signed short ssWordVariable 

ss signed char scByteVariable 

ul unsigned long ulDouble 

sl signed long slDouble 

adt abstract data type adtUNION_VAR 

fl floating flSpeedOfLight,  
flSHUTTLE_TRAJECTORY 

Pointers to any of these types (add a p in front of the prefix) 

Prefix Type Example 

p???, p?? pointer to ??? type pucByteVariable (a pointer to an 
unsigned character type)  
padtSTRUCTURE (a pointer 
to an abstract data type) 

pa?? pointer to array of type ?? paucByteVariable (a pointer 
to array of type character) 

Scope 

Prefix Type Example 

All uppercase global variables ssGLOBAL_VAR_ONE 

First letter uppercase 
and at least one lower-
case letter to follow 

local variables usLocalOne, slLOCALone, 
bfFlags_4TEST 

Constants 

Prefix Type Example 

All uppercase with 
optional prefix type fol-
lowed by an underscore 

constants TIME_CODE, SS_PI, optional 
prefix type SL_GRAVITY 
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much deliberation, the American 
National Standards Institute (ANSI) 
C standard was established, which 
today is referred to as the ISO 
9899-1990 standard for program-
ming languages—C. People, un-
fortunately, are still prone to error, 
which leads to the necessity of a 
defensive programming style to 
reduce the possibility of an “acci-
dent” or even worse, the nasty f-
word: “failure.” Arrogant program-
mers assume that compilers have 
the ability to read their minds and 
determine the intended functions 
of their code fragments. Allow me 
to clarify with an example. 

Note the misuse of operator 
precedence in the following state-
ment, a common file handling 
routine: 
if (InVar = getc(input) 
!= EOF)

The programmer’s desire is 
that the next character in the 
input stream from the file be 
loaded into the variable InVar and 
compared with the end-of-file 
character (EOF). The only problem 
is that the order of precedence of 
the compiler was assumed by the 
programmer (unfortunately, the 
compiler can’t read the mind of 
the programmer) and the func-
tion executes as follows: 
if (InVar = (getc(input) 
!= EOF))

InVar will either be set to TRUE 
or FALSE but never to the character 
of the getc command as is desired 
by the “offensive” programmer. In 
fact, InVar is set to TRUE only when 
the EOF marker is reached at the 
end of the file. This statement of 
code is then reduced to an end of 
file “finder.” (Another inventive use 
for this line of code is to induce a 
variable delay into your system, 
dependent on the length of your 
input file.) 

The goal of this article is to 
introduce you to methods that 
can help reduce the occurrence 
of software illness. I will discuss 
different techniques for defensive 
C programming that have been 
used in development of safety-
critical systems. Each section 
will establish a guiding rule or 

principle followed by supporting 
material, which in most cases will 
include examples, pseudocode, 
and C code. 

Standardisation 
Standardisation leads us to the 
first rule of defensive C-ware:  
Every software development 
team should have an agreed-
upon and formally documented 
coding standard. A coding stan-
dard consists of a set of rules that 
addresses weaknesses in the lan-
guage standard and/or compiler 
idiosyncrasies and also defines a 
format or “style” used for writing 
code. Typical items in a coding 
standard could address pointer 
usage before initialisation, the use 
of recursive algorithms, dynamic 
memory allocation, unconditional 
jumps, and so on. The coding 
standard should also help to im-
prove readability. Every person 
developing software has unique 
coding practices. Therefore, if 
more than one person is working 
on a project, a common standard 
should be established. It’s like 
handwriting—you may be able 
to read your own chicken scratch 
but others most likely will struggle 
through it. 

One of the reasons for de-
veloping a coding standard is to 
make code more readable, which 
will positively affect the following 
areas in software development: 
•	 Code generation. A standard 

reduces the probability of cod-
ing error 

•	 Code reviews. A standard in-
creases the efficiency of peer 
reviews and inspections 

•	 Quality. A standard increases 
the overall quality of the prod-
uct 

•	 Maintenance. A standard in-
creases the maintainability of 
the software product 

If you’ve ever attended a meet-
ing for developing a standard, 
you’ll notice that people are quite 
attached to their own personal 
style of programming, and that 
trying to get them to buy into 
your style is like telling them that 
their babies are ugly. When you at-
tend these meetings, be prepared 

to discuss items that will affect the 
goals for developing the standard. 
If you have a personal style that 
you want to provide which does 
not add to the underlying goal of 
making software more readable, 
then it’s best to leave that baby at 
home. 

If you don’t have a good stan-
dard in place, start off by using one 
of the publicly available standards. 
At first, try to use portions of the 
standard that will give you the 
highest return on investment and 
slowly expand the coverage as 
applicable for your development. 
Change is best implemented in 
small increments; otherwise you’ll 
probably encounter large resis-
tance to it. Standards already exist 
for specific market segments, such 
as the Motor Industry Software 
Reliability Association (MISRA, 
April 1998) intended for embed-
ded automotive applications. The 
standard consists of 127 rules, 34 
of which are defined as advisory. 
It is available on the Internet at 
www.misra.org.uk . Another 
standard developed by the U.S. 
Nuclear Regulatory Commission 

(June 1996) is the NUREG CR-
6463, entitled Review Guidelines 
on Software Languages for use 
in Nuclear Power Plant Safety 
Systems . Both of these standards 
are good starting points. 

A standard is only as good as 
the ability of the team to verify 
and enforce its implementation. 
It is a futile task to take good soft-
ware professionals and get them 
involved in software politics by 
creating laws or standards that are 
not only unenforceable but also 
unverifiable. Therefore, someone 
with authority (that is, the person 
who writes the performance re-
views) must support your efforts, 
or they will fail. 

A preferred method for verify-
ing compliance is through the 
use of static checking tools. These 
tools, although powerful, are usu-
ally unable to guarantee full com-
pliance (depending on the details 
of your standard). Another way to 
verify and enforce compliance is 
through code reviews and inspec-
tions. 2 

Variable naming . One of the 
items that is usually discussed at 

Table 2 Precedence table for C 

Operators Associatively 

( ) [ ] -> . ++ --(post) Left to right 

! ~ (pre)++ -- + - * & (type) sizeof Right to left * 

/ % Left to right 

+ - Left to right 

< < >> Left to right 

< < = > >= Left to right 

= = != Left to right 

& Left to right 

^ Left to right 

| Left to right 

&& Left to right 

|| Left to right 

?: Right to left * 

= += -= *= /= %= &= 
^= |= < < = >>= 

Right to left * 

, Left to right 

*Reversed associate property 
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a coding standards meeting is a 
naming convention for the vari-
ous C-types. The goal is to be able 
to look at a line of code and de-
termine the variable or constant 
types used. Take the following line 
of code, for example: 
Energy = Mass * 
(Speed_Of_Light_
squared);

You have limited information 
about this equation without refer-
encing the definitions document 
for the variables and constants 
used in the formula. The task of 
trying to inspect this line of code 
with respect to balancing and 
promotion of types would be time 
consuming and prone to error due 
to cross referencing. Determining 
if variables are local or global, or 
whether any concern exists about 
overflows in the calculation, can 
be difficult. 
Now assume the following ab-

breviated variable naming 
convention: 

•	 All variables will have a lower-
case, two- to three-character 
prefix which defines its type 
followed by an uppercase 
character for the start of the 
variable name (ss = signed 
short, sl = signed long, uc = 
unsigned character, and so 
on) 

•	 All local variables will have 
intermixed uppercase and 
lowercase characters to define 
their names 

•	 All global variables will be de-
fined in uppercase 

•	 All constants will be uppercase 
and if typecast in the #define, 
then a two-character prefix 
type in uppercase followed by 
an underscore will be used to 
define their type 

Following these rules, we 
would rewrite the previous equa-
tion as: 
slENERGY = usMass * 
(SL_SPEED_OF_LIGHT_
SQUARED);

An analysis of the this line of 
code reveals that slENERGY is of 
type signed long and is a global 
variable. SL_SPEED_OF_LIGHT is 

a constant cast in the define as a 
signed long. The variable usMass 
is a local variable of type unsigned 
short. A check of balancing and 
promotion is easily done now that 
the variable types are readily iden-
tified. The product of usMass with 
the SL_SPEED_OF_LIGHT forces 
usMass to be cast to an intermedi-
ate type signed long integer. The 
advantages of a naming conven-
tion are clear. The information 
now available from the rewritten 
line of code far outweighs the 
information available from the 
original line of code. 

Now when you see the follow-
ing statement at a code review: 
ssPRODUCT = (ssNumber1 
* 
ssNumber2) / scDivisor;

you should question whether 
the intermediate product would 
fit in a signed short or just play 
it safe and cast the intermediate 
product to a signed long before 
dividing. Casting one of the ele-
ments of the product to a signed 
long forces the intermediate prod-
uct of ssNumber1 and ssNumber2 
to be promoted to a signed long: 
ssPRODUCT = ((signed 
long)ssNumber1 * ssNum-
ber2) / 
scDivisor;

Let’s define a naming conven-
tion for C types. The reverse no-
tation uses a prefix to define the 
variable’s type. Table 1 contains 
conventions for all of the C types, 
in reverse notation. 

Magic numbers 
Do not use hard coded num-
bers directly in expressions. 
Maintainability becomes a hor-
rendous task when the code is 
contaminated with magic num-

bers. A magic number has mean-
ing to the original programmer at 
the time of coding, but when the 
programmer leaves the company 
due to an evolutionary process 
called career development, the 
significance of the number (unless 
defined in a comment or defini-
tion table) can lose meaning. Let’s 
take the simple line equation to 
help illustrate this point. The equa-
tion is: 
y
 = 
m
 * 
x
 + 
b

 
where m is the slope of the 

line, b is the y intercept (at x = 0), 
and x (input) and y (output) are 
the points on the x - and y -axes. 
You can write the following line of 
code to satisfy the requirements: 
ssY = (31.872983 * ssX) 
+ 45.3232;

If this line of code is out in 
the field for many years and then 
a requirement change is issued 
forcing a modification to the code, 
at first glance a person would try 
to determine the origins of the 
numbers. If the code is properly 
commented, this becomes less of 
an issue (although the same con-
stant might be used in a different 

part of the software, increasing 
complexity). Contrast that with 
the following line of code: 
ssY = (SS_PRESSURE_
SLOPE * ssX) + SS_PRES-
SURE_INTERCEPT;

The first observation you can 
make is that the equation deals 
with some type of pressure con-
stants. The key words SLOPE and 
INTERCEPT indicate to the reader 
that the expression might take 
on the format of a line equation. 
The constants can be defined in 
a parameter or constant defini-
tion file or in the local header 
file. Any changes in the value of 
the constant would propagate 
throughout the definition scope 
of the software product, spar-
ing the programmer the burden 
of searching the entire software 
product for all occurrences of the 
constant. 

Indentation 
Establish an indentation standard 
and be consistent throughout the 
work product. Structured indenta-
tion makes software easier to read, 
thereby reducing the possibility of 
coding error. Consider the follow-
ing example: 
for (x=0; x 
<
= LIMIT; ++x) {
for (y=1; y 
<

Table 4 Defining replacements for standard C types 

Replacement type C-Types Compiler sizing 

typedef unsigned char UBYTE; /* 8 bit types */ 

typedef signed char BYTE;   

typedef unsigned short UWORD; /* 16 bit types */ 

typedef signed short WORD;   

typedef unsigned long ULONG; /* 32 bit types */ 

typedef signed long LONG; 

Table 3 Limiting the definition of macros 

Macro name Definition Description 

#define SIGN(x) (((x)>=0) ? (1) : (-1)) Sign of variable i 

#define MAX(x, y) (((x) < (y)) ? (y) : (x)) Max of x or y 

#define MIN(x, y) (((x) > (y)) ? (y) : (x)) Min of x or y 

#define LIMIT(x,low,high) ((x) >(high)?(high):((x
)<(low)?(low):(x))) 
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= Y_LIMIT; ++y) 
{
z+= x*y;
if (x == TEST) {
printf(“x value pass”);
t=x/AVERAGE;
}
z /= 4;
}
}

Nerves of steel would be 
required to prepare for a code 
inspection if you had to review 
page after page of poorly in-
dented code. This piece of code 
could give the visual illusion 
that the line of code z /= 4; ex-
ecutes as part of the x for loop. 
Remember, you’re a software 
professional, not a magician. 
Leave the illusions to manage-
ment. 

Now consider the more pal-
atable solution: 
for (x=0; x 
<
= X_LIMIT; ++x) 
{
for (y=1; y 
<
= Y_LIMIT; ++y) 
{
z += x*y;
if (x = =TEST) 
{
printf(“x value pass”);
t = x/AVERAGE;
}
z /= 4;
}
}

Good indentation helps to 
visually define the structure of 
the code. The line of code z /= 
4; is clearly executed as part of 
the y for loop. In this example, 
all open and closed braces were 
put on separate lines with the 
open braces lining up with the 
first character of the conditional/
loop expression. Both versions of 
the source code execute identi-
cally; the only difference is the 
visual interpretation. A good rule 
of thumb is to allow only one 
statement per line of code and 
insert braces on their own line. 

For complex conditional 
statements with multiple ele-

ments, put each element on its 
own line. See Listing 1 for an 
example. 

Although the conditional 
statement in Listing 1 can be for-
matted in other ways that would 
equally increase the readability 
of the expression, placing each 
condition on separate lines has 
additional advantages (similar 
to those of placing each vari-
able definition on its own line). A 
change to one condition of the 
multi-conditional statement will 
not affect the other conditions. 
Each line can then be individu-
ally commented for enhanced 
clarity, as shown in Listing 2 . 

You be the judge. Which 
piece of code would you rather 
inspect? Whatever form of in-
dentation you decide to use, you 
must be consistent throughout 
your code. Remember, one of 
the objectives is to make the 
code more readable. 

Parenthesizing 
Always use full parenthesizing for 
macros and equations. To reduce 
the possibility of error when us-
ing the preprocessor, always use 
full parenthesizing. Most people 
who use parentheses when de-
fining negative numbers don’t 
use them when defining posi-
tive numbers. Parenthesizing 
all numbers is beneficial for the 
following reasons. First, nobody 
has ever gotten into trouble by 
using too many parentheses; 
it’s the placement of the paren-
theses that introduces errors. 
Second, let’s consider the fol-
lowing example of defining a 
positive number: 
#define	POS_NO	10

When the preprocessor ex-
ecutes it will find the location of 
POS_NO and replace it with the 
value of 10. Since the operation 
of the preprocessor is weakly 
defined, the compilation of the 
following line of code is entirely 
dependent on the compiler: 
ssY = .POS_NO;

The decimal point before 
POS_NO might be treated as just 
that, a decimal point and the line 

would appear to the compiler 
as: 
ssY = .10;

If you’re fortunate, your 
compiler would freak out at this 
implementation and generate an 
error message (in capital letters 
because it likes to shout when you 
do stupid things). This is the best 
case scenario. The compiler might 
very well compile this line of code 
and grant you the luxury of find-
ing the problem in the debugging 
phase. The whole problem could 
be easily avoided by #defineing 
the POS_NO parameter in paren-
theses: 
#define POS_NO	(10)

In all cases, the preprocessor 
would replace POS_NO with (10) 
and the code would appear to the 
compiler as: 
ssY = .(10);

In this case the compiler should 
flag an error. It’s worth noting here 
that the period or decimal point 
(.) is defined in the C language as 
an operator with similar attributes 
and constraints as other opera-
tors. 

Precedence . If you’ve memo-
rised the precedence table for C 
and trust your memory, you can 
skip to the next section. The rest 

of us will take a look at the order 
of arithmetic and logic prece-
dence for C. Table 2 is arranged 
from high to low precedence. 
Operators on the same row are of 
equal precedence and their asso-
ciative property is defined in the 
right column. 

For three levels of precedence, 
the associative properties are re-
versed from the rest of the table. 
The “equal” (=) assignment opera-
tor is treated as any other operator 
in C, unlike other programming 
languages (such as Pascal and 
Ada) in which the assignment op-
erator is unique. 

Consider the following equa-
tion: 
ssY = ssM * ssX + ssB;

Assuming that the algorithm 
author’s intent is that the multi-
plication should execute first, the 
line of code should be written as: 
ssY = ((ssM * ssX) + 
ssB);

By full parenthesizing every ex-
pression, you’ll eliminate the ques-
tion of when to and when not to 
do it. It also aids in documenting 
the programmer’s intent. Maybe 
the programmer wanted the sum 
of ssX and ssB to be executed be-
fore the multiplication. The equa-
tion would then be written as: 

Listing 1 Complex conditional state-
ments with multiple elements: 

a) Every element on the same line;  
b) Each element on its own line
a)
if (((ssFL_Valve==FRONT && ssCOIL_BIAS==FRONT) || (ss-
CTRL_Valve==REAR &&
ssCOIL_SIDE==LEFT || ssCOIL_SIDE==RIGHT)) && ssPOWER_
FROM_IGNITION!=OFF)
b)
if
(
(
(
ssFL_Valve==FRONT
&& ssCOIL_BIAS==FRONT
)
||
(
ssFR_Valve==REAR
&& ssCOIL_SIDE==LEFT
|| ssCOIL_SIDE==RIGHT
)
)
&&
ssPOWER_FROM_IGNITION!=OFF
)
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ssY = (ssM * (ssX + 
ssB));

Full parenthesizing should 
be second nature, especially in a 
safety-critical system. Too many 
software bugs are a direct result 
of incorrect precedence assump-
tion and/or poor parenthesizing. 
The solution for eliminating pre-
cedence problems is easy: use full 
parenthesizing. 

Using the preprocessor 
Don’t use the preprocessor for 
defining complex macros. Of 
course, the word “complex” is 
open for interpretation. It should 
therefore be defined within your 
development team. The opera-
tion of the preprocessor is poorly 
defined in the C coding standard, 
so its operation is at the mercy 
of the compiler writers. The 
preprocessor does have some 
valid uses, which, when applied 
properly, can help increase the 
maintainability and readability of 
the code. 

The preprocessor is useful for 
defining “manifest constants” and 
for pre-calculating constants. This 
feature allows the user to force the 
preprocessor to calculate math-
ematical expressions into a con-
stant type. The value of that type 
then gets replaced throughout 
the scope of the code. Scaling and 
conversions are common uses for 
this feature. For example, the con-
version from miles per hour (MPH) 
to kilometers per hour (KPH) is re-
quired for a vehicle parameter that 
is given in miles per hour: 
#define	MPH_TOP_VEHICLE_
SPEED (154) 
/*MPH*/
#define KPH_TOP_VEHI-
CLE_SPEED 
(MPH_TOP_VEHICLE_SPEED 
* 1.6) 
/*KPH*/

The calculation is carried out 
using the highest precision of 
the preprocessor, usually floating 
point, and can then be cast to the 
required type. Despite the sim-
plistic example, one can envision 
multiple conversions and scalings 
within one #define . When the 

parameter for top vehicle speed 
changes, the intermediate con-
stant calculations are automated 
by the preprocessor and the 
change would be propagated 
throughout the scope of the 
code. 

Let’s consider another example. 
We will allow the preprocessor to 
do calculations in floating point 
and then convert the constant to 
the format in which it will be used. 
The formula for the area of a tri-
angle is half of the base times the 
height. Let’s assume that for this 
application, the base and height 
are known system parameters. 
The base is equal to 10cm. The 
height is equal to 5cm. You could 
either code the area of the triangle 
directly: 
#define TRIANGLE_AREA	
(25)

Or you could define the base 
and height separately: 
#define
TRIANGLE_BASE	(10.0) 
/* cm */
#define TRIANGLE_HEIGHT	
(5.0)	
/* cm */

and then define TRIAN-
GLE_AREA as: 

#define	TRIANGLE_AREA	
(0.5 * 
TRIANGLE_BASE * TRIAN-
GLE_HEIGHT)

The value, TRIANGLE_AREA 
, is calculated by the preproces-
sor with the maximum precision 
available. TRIANGLE_AREA can 
then be type cast in the code or in 
the #define as follows: 
#define	US_TRIANGLE_AREA	
(unsigned 
short) (0.5 * TRIANGLE_
BASE * 
TRIANGLE_HEIGHT)

Since the area will always 
be positive, an unsigned short 
type is used. The advantage to 
this method is that if the base or 
height of the triangle changes, 
you don’t have to recalculate the 
area. All you have to do is change 
the parameters of the triangle in 

the definition. This technique be-
comes highly valuable when you 
have constants that are a direct 
result of complex formulas based 
on physical system parameters. 

Limit the definition of macros 
in the preprocessor to highly 
reuseable, simple functions. See 
Table 3 for an example. 

Notice the use of full parenthe-
sizing, which ensures that the ar-
guments and the resulting expres-
sions are properly bound. There is 
no room for ambiguity. The previ-
ous macro definitions are generic 
functions that will most likely be 
used often. Defining macros alle-
viates the need for a function call, 
which reduces execution time. 
However, taking the address of 
the macro is undefined because 
it has no address. Unique, applica-
tion-specific functions should not 
be defined as macros. 

#IFDEF . A word of caution 
for those who use #ifdef instead 
of #if . A common use for the #if 
statement is to strap in and out 
portions of code that are configu-
ration dependent. It would seem 
tempting to use the #ifdef , which 
calculates to TRUE if the variable 
is defined. Consider the following 
example. 

In a configuration header file, 
the following define statements 
exist: 
#define FOUR_WHEEL_DRIVE	
(0)
#define REAR_WHEEL_DRIVE	
(0)
#define FRONT_WHEEL_
DRIVE	 (1)

The configuration file allows 
the programmer to choose be-
tween the three different vehicle 
configurations that are available 
for the software product. Each 
configuration consists of unique 
straps or patches that must be 
included at compile time. Now 
suppose the programmer wants 
to strap out a piece of code using 
the defined configuration as fol-
lows: 
#ifdef	REAR_WHEEL_DRIVE
{do code block A}
#endif
#ifdef	FRONT_WHEEL_
DRIVE
{do code block B}
#endif

Both blocks of code would be 
included at compile time because 
the #ifdef only interrogates the 
variable name for a definition. A 
definition of zero (0) would still 
flag a logic TRUE to the preproces-
sor. Avoid this by eliminating the 
use of the #ifdef and #ifndef and 
use #if instead. A #undef operator 
is provided to undefine a variable 
if for some reason you crave the 
use of the #ifdef operator. 

Macros for the interface . 
Another good use for macros is 
in developing reusable interfaces. 
For example: 
#define ssGET_SENSOR_
SIGNAL() 
(signed short 
int)(RAW_ANALOG_INPUT.
SENSOR1)
#define ssGET_NEVRAM_
DATA () 

Listing 2 Each line can be individually commented for clarity 
if ((( ssFL_Valve==FRONT /*FL valve set to front when 
coil is set to front*/
&& ssCOIL_BIAS==FRONT /* Coil Bias: see DFD 1.3.4 for 
more information */
)
||
( ssCTRL_Valve==REAR
/* Control valve set to rear check coil side */
&& ssCOIL_SIDE==LEFT
/*Assure that one side is selected. Left
Side check*/
|| ssCOIL_SIDE==RIGHT
/* Check if Right Side is selected */
)
)
&& ssPOWER_FROM_IGNITION!=OFF /*Make sure that we are 
not in power save mode*/
)
)
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(NVRAM_STRUCTURE.DATA_
REGISTER)
#define
ssPUT_NVRAM_DATA ( x ) 
(NVRAM_STRUCTURE.DATA_
PORT = (x) )

The interface is defined by Get 
and Put macros and the definition 
of these macros are hardware-, 
machine-, and/or architecture-de-
pendent. In this example, the ss-
Get_sensor_signal macro looks for 
a data structure (RAW_ANALOG_
INPUT) that is memory mapped 
to the A/D converters and picks 
out the SENSOR1 port of the A/D 
converter. As an algorithm devel-
oper, my only concern is to get the 
sensor data from the first sensor ( 
SENSOR1 ). This means that what 
is hidden or encapsulated into 
the macro (similar to C++) is of 
little interest once the interface is 
designed. The sensor data might 
come from a telemetric signal that 
is bounced off of a satellite and 
then uploaded through the World 
Wide Web via an HTML page. It 
does not really matter. What’s im-
portant is the value of the sensor 
signal at a given time. Therefore, 
the interface in the main code 
would consist of Get and Put mac-
ro statements. When the hard-
ware architecture changes, only 
the macro definition is modified 
to correspond to the change. The 
software is completely void of any 
interface code with the exception 
of an interface header that links 
the outside world to the inside. 

Macros are useful when ap-
plied correctly. Conversely, they 
can be your worst enemy, unmer-
cifully enslaving you to agonizing 
hours of debugging. Ignorance is 
not bliss in this case. 

The balancing act 
Most of the time we don’t care 
how the compiler internally bal-
ances and promotes the differ-
ent variable types, as long as we 
get the desired result. When we 
don’t get the desired result we 
are rudely awakened to the tune 
of assembly-level debugging, try-
ing to determine why a simple, 
straightforward equation does 
not function correctly. In C, the 

promotion rule is as follows: 
Integral types of character, 

short integer, or an integer bit field 
and their signed and unsigned va-
rieties will be converted to signed 
integer if the signed integer can 
represent all values of the original 
type; otherwise it is converted to 
unsigned integer. (6.2.1.1 ISO) 

So chars, shorts, and bit fields 
get converted to some type of 
integer (signed or unsigned) 
before an expression is executed 
internally. 

To avoid potential problems, 
explicitly cast non integer oper-
ands in expressions. When using 
char, short, or bit fields types in 
expressions, always cast them to 
the appropriate integer type to re-
duce the possibility of conversion 
errors. If you don’t, C automatically 
converts these integral types to 
integer before executing the 
expressions, and the conversion 
might not give the desired result. 
Even if you verify the behaviour 
of your compiler for conversions 
of these types, when you switch 
to another compiler for a differ-
ent program, its behaviour might 
be different. Let’s look at another 
example that will help illustrate 
the problem. 

Let UC be a variable of type 
unsigned char set to the value of 
zero (0). Will the following condi-
tional expression result in true or 
false? 
UC = 0;
if (UC == ~0xFF) 

From the C balancing rule, 
both UC and the hex value 0xFF 
are converted to type signed in-
teger (because their values can be 
contained in the signed data type) 
before being evaluated. UC is cast 
to signed short 0:0 (both bytes 
set to zero). The hex value 0xFF is 
cast to a signed short 0:FF (the first 
byte is 0 and the second byte is set 
to hex FF). The not operator func-
tions on the integer type, which 
results in FF:0. The comparison is 
then done between 0:0 and FF:0 
and the expression from the view 
of the compiler takes on the fol-
lowing after the negate operator 
is done: 
if ((signed short)0x0000 

= = 
(signed short)0xFF00)

This expression would result in 
an evaluation of false. The problem 
could easily be avoided by casting 
the constant to the desired type: 
if (UC == (unsigned 
char)~0xFF)

This will effectively truncate 
the top byte of the integer and 
the comparison will be done on 
character types. When in doubt, 
cast it out. 

Explicitly define your types as 
signed or unsigned. If you don’t 
specify the signed or unsigned 
type, the C compiler will select 
one for you, which might not 
achieve the desired result. In most 
cases, when defining a variable as 
an integer, the compiler assigns 
the default type of signed short 
integer unless the value cannot be 
contained by that data type. When 
defining a bit field or character 
type, the default type is entirely 
compiler dependent. Explicitly de-
fining your data types as signed or 
unsigned increases the portability 
of the code. What you might con-
sider to be an unsigned character 
type in your code might actually 
be viewed by the compiler as a 
signed character type. By allowing 
the compiler to choose for you, 
you’re essentially giving up your 
first amendment right as a soft-
ware developer, which states that 
software professionals are more 
capable than compilers at making 
decisions. What about a signed bit 
field of length one? 

Explicitly cast mixed precision 
arithmetic operands in expres-
sions. In expressions, the sub-
expressions are evaluated at the 
appropriate operand precision. 

The desired result may not be 
achieved if the resultant precision 
is greater than the expressions op-
erand precision. To eliminate this 
error, explicitly cast the operands 
to the final precision of the result. 
For example: 
signed short ssV1 = 1;
signed short ssV2 = 2;
float fResult;
fResult = ssV1 / ssV2;

Here fResult incorrectly calcu-
lates to zero because the sub-ex-
pression is evaluated with integer 
precision. The expression: 

fResult = (float) (ssV1 / 
ssV2);

also incorrectly evaluates to 
zero for the same reason. The sub-
expression ssV1 / ssV2 is calculated 
with integer precision and then 
the integer result is cast to floating 
precision. Consider the following: 

fResult = (float) ssV1 / 
ssV2;

or: 

fResult = (float) ssV1 / 
(float) ssV2;

Both evaluate to the correct re-
sult (0.5). Explicitly casting one of 
the operands in the sub-expres-
sion to the desired precision of the 
result forces the sub-expression to 
be evaluated at the resultant pre-
cision. 

Portability 
Reusable code—everyone talks 
about it, yet when you’re asked 
to reuse someone else’s code, a 
chill runs up your spine. Let’s face 
it, at one time or another most of 

Listing 3 Macros for rounding, with a type cast thrown in 
#define UC_RND(i) ((UBYTE)((i)+0.5))

#define SC_RND(i) (((i)>=0) ? (BYTE)((i)+0.5) : 
(BYTE)((i)- 0.5))

#define US_RND(i) ((UWORD)((i)+0.5))

#define SS_RND(i) (((i)>=0) ? (WORD)((i)+0.5) : 
(WORD)((i)-0.5))

#define UL_RND(i) ((ULONG)((i)+0.5))

#define SL_RND(i) (((i)>=0) ? (LONG)((i)+0.5) :

(LONG)((i)-0.5))
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us had to reuse a piece of code 
that was supposed to be portable. 
In reality, it wasn’t. And we all 
remember the joy of debugging 
someone else’s code. This section 
will address some guidelines for 
designing code that is targeted for 
portability. One of the weaknesses 
of the C standard is in defining the 
sizes of types. C specifies that: 
char >= 8 bits
short >= 16 bits
integer >= 16 bits
long >= 32 bits
and a char <= short <= 
integer <= long

Portability of types becomes 
an issue in the C language be-
cause the compiler writers must 
determine the size of types based 
on these constraints. The solu-
tion is to define replacements for 
standard C types. Table 4 can be 
defined in a header file and then 
modified to reflect the size differ-
ences of your C compiler. 

The replacement types are 
used throughout the code for 
casting and defining variables. 
When you switch to a different 
compiler, just change the header 
file to reflect the type sizes. 

Defining logical opposites . 
How many times have you seen 
the following? 
#define	TRUE	 (1)
#define	FALSE	 (0)

When defining logical oppo-
sites, first define one of the logical 
states and then define the oppo-
site state as a macro based on the 
original state: 
#define	TRUE	 (1)
<
#define	FALSE	 (!TRUE)

This method has two advan-
tages. First, if the logical state 
for TRUE is changed, the logical 
states that are based on TRUE are 
automatically changed. By de-
sign, this increases the readabil-
ity of the code, provides a better 
understanding of the intent of 
the original software writer, and 
helps document the code. The 
software engineer doesn’t have 
to search and guess which states 
are logical opposites. Second, 

some optimisers will perform 
better if the logical opposite 
states are based on each other. 
An example that isn’t totally intui-
tive would be defining a flag that 
indicates bit ordering: 
#define MSB_First (TRUE) 
/* most 
significant bit is 
packed first */
#define LSB_First (!MSB_
First) 
/* least significant bit 
is 
packed first */

In this case LSB_First is the 
logical opposite of MSB_First 
because only one can be true 
for any given configuration. 
Therefore, their definitions are 
based on each other. 

Bit ordering . Bit-field ordering 
is compiler dependent. There are 
two common bit field orderings: 
most significant bit (MSB) first 
or least significant bit (LSB) first. 
When defining a bit field variable, 
use the preprocessor directive #if 
to strap in the desired bit field or-
dering at compile time based on a 
configuration flag. Some compil-
ers will give you a command line 
option to reverse bit ordering. 
Relying on the compiler option, 
though, reduces the portability of 
the code. For example, let’s look at 
the following definition: 
#if
(MSB_First)
struct Flags {
unsigned int	 Bit7: 1;
unsigned int	 Bit6: 1;
unsigned int	 Bit5: 1;
unsigned int	 Bit4: 1;
unsigned int	 Bit3: 1;
unsigned int	 Bit2: 1;

unsigned int	 Bit1: 1;
unsigned int	 Bit0: 1;
};
#elif (LSB_First)
struct Flags {
unsigned int	 Bit0: 1;
unsigned int	 Bit1: 1;
unsigned int	 Bit2: 1;
unsigned int	 Bit3: 1;
unsigned int	 Bit4: 1;
unsigned int	 Bit5: 1;
unsigned int	 Bit6: 1;
unsigned int	 Bit7: 1;
};
#endif

If MSB_First gets set to TRUE 
(1) , the bit ordering of the first 
structure is used. If LSB_First is set 
to TRUE , the bit ordering of the 
second structure is used. 

Max and min limits . If you don’t 
have a limits.h file for your compil-
er, define the limits of your types 
in a separate header file. Even if 
you have a limits.h file, it would be 
good to redefine your limits based 
on your defined types. If your 
limits change due to type size 
changes, you need only change 
the header file for these limits. A 
typical limits file definition based 
on the replacement types of Table 
4 consists of the following: 
#define	BYTE_MIN (-127) 
/* 8-bit
type */
#define	BYTE_MAX (127)
#define	UBYTE_MAX (255)
#define	WORD_MIN (-32767) 
/* 16-
bit type */
#define	WORD_MAX (32767)
#define	UWORD_MAX (65535)
#define	LONG_MIN (-
2147483647) 
/* 32-bit type */

#define	LONG_MAX 
(2147483647)
#define	ULONG_MAX 
(4294967295)

Floating point to integer 
When you allow the macros to 
pre-calculate constants using the 
maximum resolution of the pre-
processor, which is typically done 
in floating point, you must either 
truncate the result or round it up 
or down before stuffing it into an 
integer variable (assuming that 
you are using integer math in your 
software). If the accuracy of the 
variable or constant forces you 
to round to the nearest integer 
you would either add or subtract 
0.5 from the number and then 
truncate it. The possibility for er-
ror arises if you’re trying to round 
signed numbers. Let’s take the 
following example: 
#define	
SPACE_SHUTTLE_ORBITAL_
TRAJECTORY
(SHUTTLE_CRUISE_SPEED 
- (SHUT-
TLE_WEIGHT* 1.67584))

Realistically, the shuttle’s or-
bital trajectory would probably 
be done in floating point, but stick 
with me here while I use the ab-
surd to illustrate the practical. If we 
desired to round the number and 
cram it into an integer constant, 
the following rules would apply: 
•	 If the number >= 0, then add 

0.5 and truncate 
•	 If the number < 0, then sub-

tract 0.5 and truncate 

Let’s assume that the algorithm 
designer uses constants for the 
shuttle cruise speed and weight 

Listing 4 System hardware definition file 
/* Analog to Digital Hardware Parameters */

#define
#define
#define
/* Sensor Hardware 
Parameters */
#define
#define

A2D_VOLTAGE_RANGE_
MAX
A2D_VOLTAGE_RANGE_
MIN
A2D_RESOLUTION 
(1024) /* 10 BITS 
*/
SENSOR_ZERO_VOLT-
AGE
SENSOR_ZERO_POINT

(5)
(0)
(3.0)
(((SENSOR_ZERO_
VOLTAGE/(A2D_VOLT-
AGE_

/* VOLTS */
/* VOLTS */
/* VOLTS */

RANGE_MAX - A2D_VOLTAGE _RANGE_MIN))*
(A2D_RESOLUTION))
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that result in a positive trajectory. 
The #define could be coded as: 
#define \	
SL_ SPACE_SHUTTLE_OR-
BITAL_TRAJEC-
TORY	 (signed
long)
(SHUTTLE_CRUISE_SPEED 
- (SHUT-
TLE_WEIGHT* 1.67584) + 
0.5)

Years later, the shuttle cruise 
speed is reduced resulting in a 
negative shuttle orbital trajectory 
constant. The rounding in this ex-
ample is done incorrectly and the 
shuttle crashes into the earth at 
about 2,000 MPH. Oops! To elimi-
nate this problem, create macros 
for doing the rounding. And while 
you’re at it, you can even throw a 
type cast into the macro, as shown 
in Listing 3 . 

Now when the preprocessor 
calculates the equation, the macro 
checks for the sign of the result 
and then adds or subtracts 0.5 as 
appropriate, and the government 
doesn’t have to raise our taxes to 
pay for the mistake: 
#define
SL_SPACE_SHUTTLE_ORBIT-
AL_TRAJEC-
TORY SL_RND(SHUTTLE_
CRUISE_SPEED
- (SHUTTLE_WEIGHT* 
1.67584))

System parameters 
When possible, tie your constants 
and parameters back to some 
physical unit. Then if the dimen-
sions of your external system 
change, you can change the phys-
ical unit constant defined in your 
header file so that all constants 
based on the physical unit will 
be recalculated at compile time. 
Of course, you have to check for 
overflows, but hopefully the soft-
ware is defined well and you are 
given limits for the physical unit. 

For example, let’s say we have a 
10-bit analogue-to-digital voltage 
converter (A to D) with a full swing 
of zero to five volts. Let’s say that 
the zero-point for the sensor in 
which we’re interested is at +3.0V. 
You could manually calculate the 
zero point A-to-D value by taking 
3/5 * 1023 and hard code the value 
614 into the software: 
#define	SENSOR_ZERO_POINT 
(614)

If any part of the external archi-
tecture changes (voltage range, 
zero point of the sensor, A-to-D 
resolution) the software engineer 
must recalculate the A-to-D zero-
point value manually. A better 
method is to define the architec-
tural parameters in the hardware 
header file, as shown in Listing 4 . 

The value in which we’re inter-
ested is the SENSOR_ZERO_POINT 

. If any part of the parameter of the 
system changes, the value of the 
SENSOR_ZERO_POINT is auto-
matically calculated. 

The same concept holds true 
for constants that are time-based. 
You should tie them back to the 
physical oscillator or internal clock 
frequency. When you change 
processing speeds, all you have 
to do is alter the clock frequency 
and all time-based constants are 
recalculated. 

On the defensive 
Many of the ideas I’ve raised are 
familiar to software developers, 
especially those with years of 
coding experience. Unfortunately, 
experience is something you 
don’t get until just after you need 
it. There are many books authored 
on software development meth-
ods for safety-critical systems that 
define techniques to help reduce 
the occurrence of errors. An article 
of this length cannot do justice to 
the topic, but I hope your interest 
in defensive C coding practices 
has increased. For more informa-
tion on the topic, check out the 
references below. 
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